# 自定义工具类

# Socket 工具类

SocketUtil.java

解决粘包/半包问题:

import java.io.Closeable;
import java.io.IOException;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.SocketException;

public class SocketUtil {

    private static final int BUF_SIZE = 1024;

    /**
     * 从 buf 中查找 "\r\n",并返回这段(包括 \r\n)空间的长度。
     * 如果 buf 中没有,则返回 0 。
     */
    public static int findLineEnd(final byte[] buf, int rlen) {
        int splitbyte = 0;
        while (splitbyte + 1 < rlen) {
            if (buf[splitbyte] == '\r' && buf[splitbyte + 1] == '\n' && splitbyte + 1 < rlen) {
                return splitbyte + 2;
            }
            splitbyte++;
        }
        return 0;
    }

    /**
     * 半包、粘包问题解决:
     * 从 InputStream 中找一行数据并返回。“一行”的标志是截止到 \r\n,不包括 \r\n 。
     */
    public static String readLine(InputStream inputStream) throws IOException, RuntimeException {
        int splitbyte = 0;
        int rlen = 0;
        byte[] buf = new byte[BUF_SIZE];
        int read = -1;
        inputStream.mark(BUF_SIZE);
        try {
            read = inputStream.read(buf, 0, BUF_SIZE);
        } catch (Exception e) {
            throw new SocketException("Could not Read");
        }

        if (read == -1) {
            throw new SocketException("Peer is Closed.");
        }

        /* buf 中存储的数据区间为: buf[0] ... buf[read-1],共 read 个字节。 */

        while (read > 0) {
            rlen += read;
            splitbyte = findLineEnd(buf, rlen);
            if (splitbyte > 0) break;
            if (inputStream.available() == 0) break;
            read = inputStream.read(buf, rlen, BUF_SIZE - rlen);
        }

        /* buf 中存储的数据区间为: buf[0] ... buf[splitbyte-1],共 splitbyte 个字节。其中包含 \r\n 在内。*/

        // -2 的目的是返回的结果内容中不包含 \r\n 。
        return new String(buf, 0, splitbyte - 2);
    }

    public static void safeClose(Closeable closeable) {
        if (closeable == null)
            return;

        try {
            if (closeable instanceof ServerSocket) {
                if (!((ServerSocket) closeable).isClosed())
                    ((ServerSocket) closeable).close();
            } else if (closeable instanceof Socket) {
                if (!((Socket) closeable).isClosed())
                    ((Socket) closeable).close();
            } else if (closeable instanceof Closeable) {
                closeable.close();
            } else {
                throw new RuntimeException();
            }

        } catch (IOException e) {
            System.out.println("Could not close: " + e.getMessage());
        }

    }

}

# Json 工具类

JsonUtil.java
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.JavaType;
import com.fasterxml.jackson.databind.ObjectMapper;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class JsonUtil {
    public static <T> String toJSONString(Object object) {
        try {
            return new ObjectMapper().writeValueAsString(object);
        } catch (JsonProcessingException e) {
            throw new IllegalArgumentException(e);
        }
    }

    public static <T> T parseObject(String JSONString, Class<T> clazz) {
        if (!JSONString.startsWith("{") && !JSONString.endsWith("}"))
            throw new IllegalArgumentException();

        try {
            return new ObjectMapper().readValue(JSONString, clazz);
        } catch (JsonProcessingException e) {
            throw new IllegalArgumentException(e);
        }
    }

    public static <T> List<T> parseObjectList(String JSONString, Class<T> elementClass) {
        if (!JSONString.startsWith("[") && !JSONString.endsWith("]"))
            throw new IllegalArgumentException();

        JavaType javaType = getCollectionType(ArrayList.class, elementClass);
        try {
            return (List<T>) new ObjectMapper().readValue(JSONString, javaType);
        } catch (IOException e) {
            throw new IllegalArgumentException(e);
        }
    }

    private static JavaType getCollectionType(Class<?> collectionClass, Class<?>... elementClasses) {
        return new ObjectMapper()
                .getTypeFactory()
                .constructParametricType(collectionClass, elementClasses);
    }

}

# ThreadLocal 工具类样板

以在 ThreadLocal 中存放 Connection 为例。

ConnectionContainer.java
public class ConnectionContainer {
    private static ThreadLocal<Connection> container = new ThreadLocal<>();

    public static Connection get() {
        Connection connection = container.get();
        if (connection == null) {
            // 从数据库连接池中获得 Connection 对象
            ...
            container.set(connection);
        }

        return connection;
    }

    public static void clear() {
        Connection connection = container.get();
        if (connection == null)
            return;

        container.remove();
    }
}

# JWT 工具类

JwtUtil.java
import com.nimbusds.jose.*;
import com.nimbusds.jose.crypto.MACSigner;
import com.nimbusds.jose.crypto.MACVerifier;
import lombok.SneakyThrows;
import lombok.extern.slf4j.Slf4j;
import net.minidev.json.JSONObject;

import java.util.Collection;
import java.util.Map;

@Slf4j
public class JwtUtil {

    private static final String usernameKey = "username";
    private static final String authoritiesKey = "authorities";

    public static final String secret = "hello world goodbye thank you very much see you next time";

    static {
        log.info("spring security jwt secret: {}", secret);
    }

    @SneakyThrows
    public static String createJWT(String username) {
        // jwt 荷载
        JSONObject obj = new JSONObject();
        obj.put(usernameKey, username);

        return createJWT(obj);
    }

    @SneakyThrows
    public static boolean verify(String jwtString) {
        JWSObject jwsObject = JWSObject.parse(jwtString);
        JWSVerifier jwsVerifier = new MACVerifier(secret);
        return jwsObject.verify(jwsVerifier);
    }

    @SneakyThrows
    public static String getUsernameFromJWT(String jwtString) {
        JWSObject jwsObject = JWSObject.parse(jwtString);
        Map<String, Object> map = jwsObject.getPayload().toJSONObject();
        return (String) map.get(usernameKey);
    }

    @SneakyThrows
    public static String getAuthoritiesFromJwt(String jwtString) {
        JWSObject jwsObject = JWSObject.parse(jwtString);
        Map<String, Object> map = jwsObject.getPayload().toJSONObject();
        return (String) map.get(authoritiesKey);
    }

    private static String createJWT(JSONObject payload) throws JOSEException {
        // jwt 头
        JWSHeader jwsHeader = new JWSHeader.Builder(JWSAlgorithm.HS256).type(JOSEObjectType.JWT).build();

        // jwt 头 + 荷载 + 密钥 = 签名
        JWSSigner jwsSigner = new MACSigner(secret);
        JWSObject jwsObject = new JWSObject(jwsHeader, new Payload(payload));
        // 进行签名(根据前两部分生成第三部分)
        jwsObject.sign(jwsSigner);

        // 获得 jwt string
        return jwsObject.serialize();
    }

}

# Map 工具类

MapUtil.java
public class MapUtil {

    /**
     * Creates an instance of {@code HashMap}
     */
    public static <K, V> HashMap<K, V> newHashMap() {
        return new HashMap<>();
    }

    /**
     * Returns the empty map.
     */
    public static <K, V> Map<K, V> of() {
        return newHashMap();
    }

    /**
     * Returns map containing a single entry.
     */
    public static <K, V> Map<K, V> of(K k1, V v1) {
        Map<K, V> map = of();
        map.put(k1, v1);
        return map;
    }

    /**
     * Returns map containing the given entries.
     */
    public static <K, V> Map<K, V> of(K k1, V v1, K k2, V v2) {
        Map<K, V> map = of(k1, v1);
        map.put(k2, v2);
        return map;
    }

    /**
     * Returns map containing the given entries.
     */
    public static <K, V> Map<K, V> of(K k1, V v1,
                                      K k2, V v2,
                                      K k3, V v3) {
        Map<K, V> map = of(k1, v1, k2, v2);
        map.put(k3, v3);
        return map;
    }

    /**
     * Returns map containing the given entries.
     */
    public static <K, V> Map<K, V> of(K k1, V v1,
                                      K k2, V v2,
                                      K k3, V v3,
                                      K k4, V v4) {
        Map<K, V> map = of(k1, v1, k2, v2, k3, v3);
        map.put(k4, v4);
        return map;
    }

    /**
     * Returns map containing the given entries.
     */
    public static <K, V> Map<K, V> of(K k1, V v1,
                                      K k2, V v2,
                                      K k3, V v3,
                                      K k4, V v4,
                                      K k5, V v5) {
        Map<K, V> map = of(k1, v1, k2, v2, k3, v3, k4, v4);
        map.put(k5, v5);
        return map;
    }

    /**
     * Returns map containing the given entries.
     */
    public static <K, V> Map<K, V> of(K k1, V v1,
                                      K k2, V v2,
                                      K k3, V v3,
                                      K k4, V v4,
                                      K k5, V v5,
                                      K k6, V v6) {
        Map<K, V> map = of(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5);
        map.put(k6, v6);
        return map;
    }

    /**
     * Returns map containing the given entries.
     */
    public static <K, V> Map<K, V> of(K k1, V v1,
                                      K k2, V v2,
                                      K k3, V v3,
                                      K k4, V v4,
                                      K k5, V v5,
                                      K k6, V v6,
                                      K k7, V v7) {
        Map<K, V> map = of(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5, k6, v6);
        map.put(k7, v7);
        return map;
    }

    public static <K, V> Map<K, V> of(K k1, V v1,
                                      K k2, V v2,
                                      K k3, V v3,
                                      K k4, V v4,
                                      K k5, V v5,
                                      K k6, V v6,
                                      K k7, V v7,
                                      K k8, V v8) {
        Map<K, V> map = of(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5, k6, v6, k7, v7);
        map.put(k8, v8);
        return map;
    }

    /**
     * Returns map containing the given entries.
     */
    public static <K, V> Builder<K, V> builder() {
        return new Builder<>();
    }

    public static final class Builder<K, V> {

        private Map<K, V> map;
        private boolean underConstruction;

        private Builder() {
            map = newHashMap();
            underConstruction = true;
        }

        public Builder<K, V> put(K k, V v) {
            if (!underConstruction) {
                throw new IllegalStateException("Underlying map has already been built");
            }
            map.put(k, v);
            return this;
        }

        public Map<K, V> build() {
            if (!underConstruction) {
                throw new IllegalStateException("Underlying map has already been built");
            }
            underConstruction = false;
            return map;
        }
    }
}

# MT19937 随机算法实现

Mersenne Twister 算法译为马特赛特旋转演算法,是伪随机数发生器之一,其主要作用是生成伪随机数。此算法是 Makoto Matsumoto(松本)和 Takuji Nishimura(西村)于 1997 年开发的,基于有限二进制字段上的矩阵线性再生。可以快速产生高质量的伪随机数,修正了古老随机数产生算法的很多缺陷。

Mersenne Twister 这个名字来自周期长度通常取 Mersenne 质数这样一个事实。常见的有两个变种 Mersenne Twister MT19937 和 Mersenne Twister MT19937-64 。

Mersenne Twister 有以下优点:随机性好,在计算机上容易实现,占用内存较少(mt19937 的 C 程式码执行仅需 624 个字的工作区域),与其它已使用的伪随机数发生器相比,产生随机数的速度快、周期长,可达到 2^19937-1,且具有 623 维均匀分布的性质,对于一般的应用来说,足够大了,序列关联比较小,能通过很多随机性测试。

MTRandom.java
import java.util.HashMap;
import java.util.Map;
import java.util.Random;

/**
 * MT19937 的 Java 实现。用于高效生成伪随机数。
 */
public class MTRandom extends Random {

    // Constants used in the original C implementation
    private final static int UPPER_MASK = 0x80000000;
    private final static int LOWER_MASK = 0x7fffffff;

    private final static int N = 624;
    private final static int M = 397;
    private final static int MAGIC[] = {0x0, 0x9908b0df};
    private final static int MAGIC_FACTOR1 = 1812433253;
    private final static int MAGIC_FACTOR2 = 1664525;
    private final static int MAGIC_FACTOR3 = 1566083941;
    private final static int MAGIC_MASK1 = 0x9d2c5680;
    private final static int MAGIC_MASK2 = 0xefc60000;
    private final static int MAGIC_SEED = 19650218;
    private final static long DEFAULT_SEED = 5489L;

    // Internal state
    private transient int[] mt;
    private transient int mti;
    private transient boolean compat = false;

    // Temporary buffer used during setSeed(long)
    private transient int[] ibuf;

    /**
     * The default constructor for an instance of MTRandom.  This invokes
     * the no-argument constructor for java.util.Random which will result
     * in the class being initialised with a seed value obtained by calling
     * System.currentTimeMillis().
     */
    public MTRandom() {
    }

    /**
     * This version of the constructor can be used to implement identical
     * behaviour to the original C code version of this algorithm including
     * exactly replicating the case where the seed value had not been set
     * prior to calling genrand_int32.
     * <p>
     * If the compatibility flag is set to true, then the algorithm will be
     * seeded with the same default value as was used in the original C
     * code.  Furthermore the setSeed() method, which must take a 64 bit
     * long value, will be limited to using only the lower 32 bits of the
     * seed to facilitate seamless migration of existing C code into Java
     * where identical behaviour is required.
     * <p>
     * Whilst useful for ensuring backwards compatibility, it is advised
     * that this feature not be used unless specifically required, due to
     * the reduction in strength of the seed value.
     *
     * @param compatible Compatibility flag for replicating original
     *                   behaviour.
     */
    public MTRandom(boolean compatible) {
        super(0L);
        compat = compatible;
        setSeed(compat ? DEFAULT_SEED : System.currentTimeMillis());
    }

    /**
     * This version of the constructor simply initialises the class with
     * the given 64 bit seed value.  For a better random number sequence
     * this seed value should contain as much entropy as possible.
     *
     * @param seed The seed value with which to initialise this class.
     */
    public MTRandom(long seed) {
        super(seed);
    }

    /**
     * This version of the constructor initialises the class with the
     * given byte array.  All the data will be used to initialise this
     * instance.
     *
     * @param buf The non-empty byte array of seed information.
     * @throws NullPointerException     if the buffer is null.
     * @throws IllegalArgumentException if the buffer has zero length.
     */
    public MTRandom(byte[] buf) {
        super(0L);
        setSeed(buf);
    }

    /**
     * This version of the constructor initialises the class with the
     * given integer array.  All the data will be used to initialise
     * this instance.
     *
     * @param buf The non-empty integer array of seed information.
     * @throws NullPointerException     if the buffer is null.
     * @throws IllegalArgumentException if the buffer has zero length.
     */
    public MTRandom(int[] buf) {
        super(0L);
        setSeed(buf);
    }

    // Initializes mt[N] with a simple integer seed. This method is
    // required as part of the Mersenne Twister algorithm but need
    // not be made public.
    private final void setSeed(int seed) {

        // Annoying runtime check for initialisation of internal data
        // caused by java.util.Random invoking setSeed() during init.
        // This is unavoidable because no fields in our instance will
        // have been initialised at this point, not even if the code
        // were placed at the declaration of the member variable.
        if (mt == null) mt = new int[N];

        // ---- Begin Mersenne Twister Algorithm ----
        mt[0] = seed;
        for (mti = 1; mti < N; mti++) {
            mt[mti] = (MAGIC_FACTOR1 * (mt[mti - 1] ^ (mt[mti - 1] >>> 30)) + mti);
        }
        // ---- End Mersenne Twister Algorithm ----
    }

    /**
     * This method resets the state of this instance using the 64
     * bits of seed data provided.  Note that if the same seed data
     * is passed to two different instances of MTRandom (both of
     * which share the same compatibility state) then the sequence
     * of numbers generated by both instances will be identical.
     * <p>
     * If this instance was initialised in 'compatibility' mode then
     * this method will only use the lower 32 bits of any seed value
     * passed in and will match the behaviour of the original C code
     * exactly with respect to state initialisation.
     *
     * @param seed The 64 bit value used to initialise the random
     *             number generator state.
     */
    public final synchronized void setSeed(long seed) {
        if (compat) {
            setSeed((int) seed);
        } else {

            // Annoying runtime check for initialisation of internal data
            // caused by java.util.Random invoking setSeed() during init.
            // This is unavoidable because no fields in our instance will
            // have been initialised at this point, not even if the code
            // were placed at the declaration of the member variable.
            if (ibuf == null) ibuf = new int[2];

            ibuf[0] = (int) seed;
            ibuf[1] = (int) (seed >>> 32);
            setSeed(ibuf);
        }
    }

    /**
     * This method resets the state of this instance using the byte
     * array of seed data provided.  Note that calling this method
     * is equivalent to calling "setSeed(pack(buf))" and in particular
     * will result in a new integer array being generated during the
     * call.  If you wish to retain this seed data to allow the pseudo
     * random sequence to be restarted then it would be more efficient
     * to use the "pack()" method to convert it into an integer array
     * first and then use that to re-seed the instance.  The behaviour
     * of the class will be the same in both cases but it will be more
     * efficient.
     *
     * @param buf The non-empty byte array of seed information.
     * @throws NullPointerException     if the buffer is null.
     * @throws IllegalArgumentException if the buffer has zero length.
     */
    public final void setSeed(byte[] buf) {
        setSeed(pack(buf));
    }

    /**
     * This method resets the state of this instance using the integer
     * array of seed data provided.  This is the canonical way of
     * resetting the pseudo random number sequence.
     *
     * @param buf The non-empty integer array of seed information.
     * @throws NullPointerException     if the buffer is null.
     * @throws IllegalArgumentException if the buffer has zero length.
     */
    public final synchronized void setSeed(int[] buf) {
        int length = buf.length;
        if (length == 0) throw new IllegalArgumentException("Seed buffer may not be empty");
        // ---- Begin Mersenne Twister Algorithm ----
        int i = 1, j = 0, k = (N > length ? N : length);
        setSeed(MAGIC_SEED);
        for (; k > 0; k--) {
            mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * MAGIC_FACTOR2)) + buf[j] + j;
            i++;
            j++;
            if (i >= N) {
                mt[0] = mt[N - 1];
                i = 1;
            }
            if (j >= length) j = 0;
        }
        for (k = N - 1; k > 0; k--) {
            mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * MAGIC_FACTOR3)) - i;
            i++;
            if (i >= N) {
                mt[0] = mt[N - 1];
                i = 1;
            }
        }
        mt[0] = UPPER_MASK; // MSB is 1; assuring non-zero initial array
        // ---- End Mersenne Twister Algorithm ----
    }

    /**
     * This method forms the basis for generating a pseudo random number
     * sequence from this class.  If given a value of 32, this method
     * behaves identically to the genrand_int32 function in the original
     * C code and ensures that using the standard nextInt() function
     * (inherited from Random) we are able to replicate behaviour exactly.
     * <p>
     * Note that where the number of bits requested is not equal to 32
     * then bits will simply be masked out from the top of the returned
     * integer value.  That is to say that:
     * <pre>
     * mt.setSeed(12345);
     * int foo = mt.nextInt(16) + (mt.nextInt(16) << 16);</pre>
     * will not give the same result as
     * <pre>
     * mt.setSeed(12345);
     * int foo = mt.nextInt(32);</pre>
     *
     * @param bits The number of significant bits desired in the output.
     * @return The next value in the pseudo random sequence with the
     * specified number of bits in the lower part of the integer.
     */
    protected final synchronized int next(int bits) {
        // ---- Begin Mersenne Twister Algorithm ----
        int y, kk;
        if (mti >= N) {             // generate N words at one time

            // In the original C implementation, mti is checked here
            // to determine if initialisation has occurred; if not
            // it initialises this instance with DEFAULT_SEED (5489).
            // This is no longer necessary as initialisation of the
            // Java instance must result in initialisation occurring
            // Use the constructor MTRandom(true) to enable backwards
            // compatible behaviour.

            for (kk = 0; kk < N - M; kk++) {
                y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
                mt[kk] = mt[kk + M] ^ (y >>> 1) ^ MAGIC[y & 0x1];
            }
            for (; kk < N - 1; kk++) {
                y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
                mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ MAGIC[y & 0x1];
            }
            y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
            mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ MAGIC[y & 0x1];

            mti = 0;
        }

        y = mt[mti++];

        // Tempering
        y ^= (y >>> 11);
        y ^= (y << 7) & MAGIC_MASK1;
        y ^= (y << 15) & MAGIC_MASK2;
        y ^= (y >>> 18);
        // ---- End Mersenne Twister Algorithm ----
        return (y >>> (32 - bits));
    }

    // This is a fairly obscure little code section to pack a
    // byte[] into an int[] in little endian ordering.

    /**
     * This simply utility method can be used in cases where a byte
     * array of seed data is to be used to repeatedly re-seed the
     * random number sequence.  By packing the byte array into an
     * integer array first, using this method, and then invoking
     * setSeed() with that; it removes the need to re-pack the byte
     * array each time setSeed() is called.
     * <p>
     * If the length of the byte array is not a multiple of 4 then
     * it is implicitly padded with zeros as necessary.  For example:
     * <pre>    byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }</pre>
     * becomes
     * <pre>    int[]  { 0x04030201, 0x00000605 }</pre>
     * <p>
     * Note that this method will not complain if the given byte array
     * is empty and will produce an empty integer array, but the
     * setSeed() method will throw an exception if the empty integer
     * array is passed to it.
     *
     * @param buf The non-null byte array to be packed.
     * @return A non-null integer array of the packed bytes.
     * @throws NullPointerException if the given byte array is null.
     */
    public static int[] pack(byte[] buf) {
        int k, blen = buf.length, ilen = ((buf.length + 3) >>> 2);
        int[] ibuf = new int[ilen];
        for (int n = 0; n < ilen; n++) {
            int m = (n + 1) << 2;
            if (m > blen) m = blen;
            for (k = buf[--m] & 0xff; (m & 0x3) != 0; k = (k << 8) | buf[--m] & 0xff)
                ;
            ibuf[n] = k;
        }
        return ibuf;
    }

    /**
     * 使用/验证代码
     */
    public static void main(String[] args) {
        // MT19937 随机算法的 Java 实现
        MTRandom mtRandom = new MTRandom();
        Map<Integer, Integer> map = new HashMap<>();
        // 循环次数
        int times = 1000000;
        long startTime = System.currentTimeMillis();
        for (int i = 0; i < times; i++) {
            // 使用 Map 去重
            map.put(mtRandom.next(32), 0);
        }
        // 打印循环次数
        System.out.println("times:" + times);
        // 打印 Map 的个数
        System.out.println("num:" + map.size());
        // 打印非重复比率
        System.out.println("proportion:" + map.size() / (double) times);
        // 花费的时间(单位为毫秒)
        System.out.println("time:" + (System.currentTimeMillis() - startTime));
    }
}

# 自定义全局时钟源

CurrentTimeMillisClock.java
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;

public class CurrentTimeMillisClock {
    private final AtomicLong now;

    private CurrentTimeMillisClock() {
        this.now = new AtomicLong(System.currentTimeMillis());
        scheduleTick();
    }

    private void scheduleTick() {
        new ScheduledThreadPoolExecutor(1, runnable -> {
            Thread thread = new Thread(runnable, "current-time-millis");
            thread.setDaemon(true);
            return thread;
        }).scheduleAtFixedRate(() -> {
            now.set(System.currentTimeMillis());
        }, 1, 1, TimeUnit.MILLISECONDS);
    }

    public long now() {
        return now.get();
    }

    public static CurrentTimeMillisClock getInstance() {
        return SingletonHolder.INSTANCE;
    }

    private static class SingletonHolder {
        private static final CurrentTimeMillisClock INSTANCE = new CurrentTimeMillisClock();
    }

    // ==================================== test =====================================

    /**
     * 理论上来说,都是调用 100 次 System.currentTimeMillis() ,但是并行情况下比串行情况下要慢上很多(几百上千倍的差距),原因在于:
     *
     * 1. 调用 gettimeofday() 需要从用户态切换到内核态;
     * 2. gettimeofday() 的表现受 Linux 系统的计时器(时钟源)影响,在 HPET 计时器下性能尤其差;
     * 3. 系统只有一个全局时钟源,高并发或频繁访问会造成严重的争用。
     *
     * javaTimeMillis() 方法,这就是 System.currentTimeMillis() 的 native 实现。gettimeofday() 是其方法中的核心代码。
     *
     * 最常见的办法是用单个调度线程来按毫秒更新时间戳,相当于维护一个全局缓存。其他线程取时间戳时相当于从内存取,不会再造成时钟资源的争用,代价就是牺牲了一些精确度。
     * 使用的时候,直接 CurrentTimeMillisClock.getInstance().now()就可以了。
     * 不过,在 System.currentTimeMillis() 的效率没有影响程序整体的效率时,就完全没有必要做这种优化,这只是为极端情况准备的。
     */
    private static final int COUNT = 10000000;

    public static void main(String[] args) throws Exception {

        long beginTime = System.nanoTime();
        for (int i = 0; i < COUNT; i++) {
            System.currentTimeMillis();
        }
        long elapsedTime = System.nanoTime() - beginTime;
        // 单线程调用 100 次
        System.out.println("串行 : " + elapsedTime + " ns");

        // ------------------------------------------------------------------

        CountDownLatch startLatch = new CountDownLatch(1);
        CountDownLatch endLatch = new CountDownLatch(COUNT);
        for (int i = 0; i < COUNT; i++) {
            new Thread(() -> {
                try {
                    startLatch.await();
//                    System.currentTimeMillis();
                    CurrentTimeMillisClock.getInstance().now();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    endLatch.countDown();
                }
            }).start();
        }
        beginTime = System.nanoTime();
        startLatch.countDown();
        endLatch.await();
        elapsedTime = System.nanoTime() - beginTime;
        // 100 个线程各自调用过一次
        System.out.println("并行 : " + elapsedTime + " ns");
    }
}

# Hsah 环

也被称为一致性 Hash 算法

ConsistentHashMap.java
/**
 * 重点:
 * 1. 如何造一个 hash 环,
 * 2. 如何在哈希环上映射服务器节点,
 * 3. 如何找到对应的节点
 */
public class ConsistentHashMap<K, V> {

    //key表示服务器的hash值,value表示服务器
    private SortedMap<K, V> sortedMap;

    public ConsistentHashMap() {
        this.sortedMap = new TreeMap<>();
    }

    public void put(K key, V value) {
        sortedMap.put(key, value);
    }

    public V get(K key) {
        long hash = key.hashCode();
        // 得到大于该Hash值的所有Map
        SortedMap<K, V> subMap = sortedMap.tailMap(key);

        return subMap.isEmpty()
                ? sortedMap.get(sortedMap.firstKey()) // 如果没有比该key的hash值大的,则从第一个node开始
                : subMap.get(subMap.firstKey());      // 第一个Key就是顺时针过去离node最近的那个结点
    }

    public static void main(String[] args) {
        ConsistentHashMap<Integer, String> hashMap = new ConsistentHashMap<>();
        for (int i = 0; i < 100; i += 10)
            hashMap.put(i, String.valueOf(i));

        for (int i = 0; i < 100; i++)
            System.out.println(i + "被路由到结点[" + hashMap.get(i) + "]");
    }
}

# Spring ApplicationContextHolder

方案一:利用 @Autowired
@Component
public class ApplicationContextHolder {

    private static ApplicationContext APPLICATION_CONTEXT;

    // 构造注入
    public ApplicationContextHolder(ApplicationContext context) {
        APPLICATION_CONTEXT = context;
    }

    public static ApplicationContext getApplicationContext() {
        return APPLICATION_CONTEXT;
    }
 
/*
    @SuppressWarnings("unchecked")
    public static <T> T getBean(String name) {
        return (T) APPLICATION_CONTEXT.getBean(name);
    }
 
    public static <T> T getBean(Class<T> requiredType) {
        return APPLICATION_CONTEXT.getBean(requiredType);
    }
*/
    
}
方案二:实现 ApplicationContextAware 接口:
@Component
public class ApplicationContextHolder implements ApplicationContextAware {

    private static ApplicationContext applicationContext = null;

    @Override
    public void setApplicationContext(ApplicationContext applicationContext) {
        SpringContextHolder.applicationContext = applicationContext;
    }
 
    public static ApplicationContext getApplicationContext() {
        return applicationContext;
    }
    /* 
    @SuppressWarnings("unchecked")
    public static <T> T getBean(String name) {
        return (T) applicationContext.getBean(name);
    }
 
    @SuppressWarnings("unchecked")
    public static <T> T getBean(Class<T> requiredType) {
        return applicationContext.getBean(requiredType);
    }
    */
}